
An Introduction to
Software Engineering

David Greenstein

Monta Vista High School

Software Today

Software Development
• Pre-1970’s - Emphasis on efficiency
• Compact, fast algorithms on machines with limited

memory

• Required long learning curve, cryptic code

• Today
• Emphasis on programmer productivity, team

development, reusable code, maintainable code,
portable code

• Relatively user-friendly code

• Pre-Programmable machines
• Fixed machines - the instructions were in the design
• Wired machines - the instructions were in the wiring

• Early stored program machines
Program by loading cards, tape, etc.

• Von Neumann architecture
Modern computer architecture

Stores both the instructions and the data

• Modified Harvard machine
Special-purpose processors, like a GPU

Two sets of registers: one dedicated for  
instructions and the other for data

Evolution of Computer Architecture

Modern Von Neumann Architecture

Needs a high-level language

• FORTRAN (1956) - FORmula TRANslator, for scientific
applications

• COBOL (1960) - for business applications

• Pascal and C (1970’s) - block structured

• C++ (1980’s) - the OOP version of C

• Java (1990’s) - a platform-independent language for the
Internet, also OOP

High-level Language Timeline (Abridged)

1950 1960 1970 1980 1990 2000 2010 2020

Fortran
COBOL

C
Pascal C++ Java

OOP - Object-Oriented Programming

• OOP models a world of active objects.

• An object has “memory” or “state”, and can contain other
objects.

• An object has “behaviors” or “methods” that process
messages from other objects.

• An object’s method can change it’s state, send messages
to other objects, and create new objects.

• An object belongs to a particular class. A class determines
the functionality of all objects that belong to that class.

• Programmers define classes to create an OOP application.

• Inheritance: a subclass can take on all of the attributes
(states) and behaviors (methods) of another class, can
redefine those behaviors, add new behaviors, and add
new attributes.

Main OOP Concepts

• Polymorphism: to process objects differently based
upon their data types

Main OOP Concepts

Mammals

Function: eats() Function: eats()

eats() is defined differently for each.

• Encapsulation: keeps the data and code safe from
outside influence

Main OOP Concepts

OOP Benefits

• Easier to reuse components

• Easier to maintain

• Allows for team development

High-level Language
Development
Environments

• source code - a file that contains the program in a
programming language

• object code - a file that is generated by the compiler
which contains the program in a form specific to the CPU

• machine code - an executable file that runs on a
specific CPU

• bytecode - a file generated by the Java compiler that
can be run by the Java interpreter. It is neither object nor
machine code!

File Types

C Program
(Compiler Paradigm)

Source
Code

Compiler Object
Code

Library

Machine
CodeLinkerEditor

Development Phase

Machine
Code

Execution Phase

OS

• Advantages
ready to run
fast execution
uses little memory
source code is private

• Disadvantages
executes only on one
CPU (must be “ported”)
lots of steps, slow turn-
around
inflexible

BASIC Program
(Interpreter Paradigm)

Source
Code

Library

Editor

Development Phase

Execution Phase

OSInterpreterSource
Code

• Advantages
portable between CPUs
dynamic typing and
scoping
simple to test
easy to debug

• Disadvantages
slower than other
paradigms
uses more memory
requires interpreter
specific to each CPU
and OS
source code not private

Java Program
(Compiler + Interpreter Paradigm)

Source
Code

Compiler Bytecode

Library

Editor

Development Phase

Execution Phase

OSBytecode Interpreter

(javac)

(java)

• Advantages
Bytecode portable
between CPUs and OSs
runs faster than
Interpreter Paradigm
source code is private
interpreter can perform
extra checking (like
virus checking)

• Disadvantages
every code change
requires recompiling
requires compiler and
interpreter ported to
each CPU and OS
generally slower than
Compiler Paradigm

• editor - a program that provides the user a GUI to input
text and output a source file

• compiler - a program that converts high-level code into
object code (for CPU) or bytecode (for Virtual Machine)

• linker - a program that “links” the object code with
prebuilt library functions

• interpreter - a program that reads and executes source
code or bytecode, and contains an embedded linker

Programs for Development

• Checks program syntax - reports syntax errors based on
strict syntactic rules

• Creates bytecode file - only when there are no syntax errors

Java Compiler

% javac MyPerfectProgram.java
MyPerfectProgram.java:7: cannot find symbol
symbol : variable i
location: class MyPerfectProgram
 i = 1;
 ^
MyPerfectProgram.java:8: incompatible types
found : int
required: boolean
 for (int a; 5; a++)
 ^
2 errors
%

• Links and executes the bytecode program

• Allocates memory during runtime

• Catches and reports runtime errors - allows for a
graceful exit to the OS if there is a problem

Java Interpreter

% java HereWeGo
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 5
 at HereWeGo.main(HereWeGo.java:10)
%

Layers of a
Simple Calculator

User

Functions

Processor

Stored
in

ROM

Layers in a
Computer

User

Application

Operating System

Drivers

BIOS

CPU

Stored
in

ROM

Stored
on

Secondary
Storage

The Java
Development
Environment

JDK - Java Development Kit

• javac
Java compiler

• java
Java interpreter

• javadoc
Generates HTML documentation from the source
code

• jar
Creates a Java package file (JAR file)

Command line tools, no GUI

JDK - Java Development Kit
(cont.)

• Originally developed by  
Sun Computer (now Oracle)

Jim Gosling - “Father of Java”

• Download is available for all OS platforms  
(we use runtime version 7 in the lab)

For PC or Linux: Google “jdk 7”

For Mac: Google “legacy jdk 6 mac” (unfortunately,
must have maintenance agreement to get version 7)

IDE
(Integrated Development Environment)

• GUI frontend for programming languages

• Integrates editor, compiler, interpreter, and debugger into one
tool

• Popular IDEs for Java
Eclipse

BlueJ

NetBeans

• The IDE good, bad, and ugly
Good: Speeds the development process.

Bad: Hinders the process of learning languages. Mr Greenstein
does not provide help if you have an IDE problem.

Ugly: Constant use could negatively affect your grade!

My advice: DO NOT USE IDE!

Text Editor
• Creates the Java source code file

• Recommend using bare-bones editors
For Linux we recommend Geany

For PC we recommend  
NotePad or Sublime

For Mac we recommend  
BBEdit (free version)

Questions???

